skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kindsvater, Holly K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Detecting declines and quantifying extinction risk of long‐lived, highly fecund vertebrates, including fishes, reptiles, and amphibians, can be challenging. In addition to the false notion that large clutches always buffer against population declines, the imperiled status of long‐lived species can often be masked by extinction debt, wherein adults persist on the landscape for several years after populations cease to be viable. Here we develop a demographic model for the eastern hellbender (Cryptobranchus alleganiensis), an imperiled aquatic salamander with paternal care. We examined the individual and interactive effects of three of the leading threats hypothesized to contribute to the species' demise: habitat loss due to siltation, high rates of nest failure, and excess adult mortality caused by fishing and harvest. We parameterized the model using data on their life history and reproductive ecology to model the fates of individual nests and address multiple sources of density‐dependent mortality under both deterministic and stochastic environmental conditions. Our model suggests that high rates of nest failure observed in the field are sufficient to drive hellbender populations toward a geriatric age distribution and eventually to localized extinction but that this process takes decades. Moreover, the combination of limited nest site availability due to siltation, nest failure, and stochastic adult mortality can interact to increase the likelihood and pace of extinction, which was particularly evident under stochastic scenarios. Density dependence in larval survival and recruitment can severely hamper a population's ability to recover from declines. Our model helps to identify tipping points beyond which extinction becomes certain and management interventions become necessary. Our approach can be generalized to understand the interactive effects of various threats to the extinction risk of other long‐lived vertebrates. As we face unprecedented rates of environmental change, holistic approaches incorporating multiple concurrent threats and their impacts on different aspects of life history will be necessary to proactively conserve long‐lived species. 
    more » « less
  2. Populations declining toward extinction can persist via genetic adaptation in a process called evolutionary rescue. Predicting evolutionary rescue has applications ranging from conservation biology to medicine, but requires understanding and integrating the multiple effects of a stressful environmental change on population processes. Here we derive a simple expression for how generation time, a key determinant of the rate of evolution, varies with population size during evolutionary rescue. Change in generation time is quantitatively predicted by comparing how intraspecific competition and the source of maladaptation each affect the rates of births and deaths in the population. Depending on the difference between two parameters quantifying these effects, the model predicts that populations may experience substantial changes in their rate of adaptation in both positive and negative directions, or adapt consistently despite severe stress. These predictions were then tested by comparison to the results of individual-based simulations of evolutionary rescue, which validated that the tolerable rate of environmental change varied considerably as described by analytical results. We discuss how these results inform efforts to understand wildlife disease and adaptation to climate change, evolution in managed populations and treatment resistance in pathogens. 
    more » « less
  3. Sexual selection arising from sperm competition has driven the evolution of immense variation in ejaculate allocation and sperm characteristics not only among species, but also among males within a species. One question that has received little attention is how cooperation among males affects these patterns. Here we ask how male alternative reproductive types differ in testes size, ejaculate production, and sperm morphology in the ocellated wrasse, a marine fish in which unrelated males cooperate and compete during reproduction. Nesting males build nests, court females and provide care. Sneaker males only “sneak” spawn, while satellite males sneak, but also help by chasing away sneakers. We found that satellite males have larger absolute testes than either sneakers or nesting males, despite their cooperative role. Nesting males invested relatively less in testes than either sneakers or satellites. Though sneakers produced smaller ejaculates than either satellite or nesting males, we found no difference among male types in either sperm cell concentration or sperm number, implying sneakers may produce less seminal fluid. Sperm tail length did not differ significantly among male types, but sneaker sperm cells had significantly larger heads than either satellite or nesting male sperm, consistent with past research showing sneakers produce slower sperm. Our results highlight that social interactions among males can influence sperm and ejaculate production. 
    more » « less
  4. Complex life cycles, in which discrete life stages of the same organism differ in form or function and often occupy different ecological niches, are common in nature. Because stages share the same genome, selective effects on one stage may have cascading consequences through the entire life cycle. Theoretical and empirical studies have not yet generated clear predictions about how life cycle complexity will influence patterns of adaptation in response to rapidly changing environments or tested theoretical predictions for fitness trade-offs (or lack thereof) across life stages. We discuss complex life cycle evolution and outline three hypotheses—ontogenetic decoupling, antagonistic ontogenetic pleiotropy and synergistic ontogenetic pleiotropy—for how selection may operate on organisms with complex life cycles. We suggest a within-generation experimental design that promises significant insight into composite selection across life cycle stages. As part of this design, we conducted simulations to determine the power needed to detect selection across a life cycle using a population genetic framework. This analysis demonstrated that recently published studies reporting within-generation selection were underpowered to detect small allele frequency changes (approx. 0.1). The power analysis indicates challenging but attainable sampling requirements for many systems, though plants and marine invertebrates with high fecundity are excellent systems for exploring how organisms with complex life cycles may adapt to climate change. 
    more » « less
  5. Abstract Size‐based harvest limits or gear regulations are often used to manage fishing mortality and ensure the spawning biomass of females is sufficiently protected. Yet, management interactions with species’ mating systems that affect fishery sustainability and yield are rarely considered. For species with obligate male care, it is possible that size‐specific harvest of males will decrease larval production. In order to examine how size‐based management practices interact with mating systems, we modelled fisheries of two species with obligate care of nests, corkwing wrasse (Symphodus melops, Labridae) and lingcod (Ophiodon elongatus,Hexigrammidae) under two management scenarios, a minimum size limit and a harvest slot limit. We simulated the population dynamics, larval production and yield to the fishery under a range of fishing mortalities. We also modelled size‐dependent male care to determine its interaction with management. In both species, the slot limit decreased yield by <12% (relative to minimum size limits) at low fishing mortalities; at higher mortalities, individuals rarely survived to outgrow the slot and spawning potential decreased substantially relative to unfished levels, similar to minimum size limits. Spawning potential decreased less when managed with a slot limit if we included a positive feedback between male size, care and hatching success, but the benefit of implementing the slot depended both on the relative proportions of each sex selected by the fishery and on our assumptions regarding male size and care. This work highlights that the effects of size‐ and sex‐selective fisheries management can be nuanced and produce counter‐intuitive results. 
    more » « less